XL2 Remote Measurement

Reference Manual V4.33

Refers to XL2 firmware version 4.33 or higher
30. January 2020
Table of contents

Introduction ... 5
Purpose of the XL2 Remote Measurement .. 5
XL2 Projector PRO .. 5
Remote Measurement Option required ... 6
Driver ... 6
Getting Started ... 7
 Microsoft Excel Demo Application .. 7
 Labview Demo Application .. 8
 Demos with TERMINAL Program .. 11
Commands ... 14
 Command Structure .. 14
 Command Notation & Descriptive Symbols ... 15
 My first program (a typical program skeleton) .. 16
Device Status ... 17
 *IDN? ... 17
 *RST ... 17
Debug ... 18
 ECHO .. 18
INITiate Subsystem ... 18
 INITiate .. 18
 INITiate:STATE? ... 18
 INITiate:STATE:SETTlingtime? .. 19
MEASure Subsystem ... 20
 MEASure:FUNCTION .. 20
 MEASure:FUNCTION? .. 20
 MEASure:INITiate .. 20
 MEASure:TIMer? .. 21
 MEASure:DTTIme? ... 21
 MEASure:DECLimals .. 22
 MEASure:DECLimals? ... 22
 MEASure:DOMAin? ... 22
 MEASure:VIBDbref? (Domain: Vibration) ... 22
MEASure: SLM Subsystem (Domain: Sound) ... 23
 MEASure:SLM:123? .. 23
 MEASure:SLM:123:dt? .. 24
 MEASure:SLM:RTA? .. 25
 MEASure:SLM:RTA:dt? ... 25
 MEASure:SLM:RTA:WEIGHTing ... 26
MEASURE: SLM:RTA:WEIGHTING?...26
MEASURE: SLM:RTA:RESOLUTION...26
MEASURE: SLM:RTA:RESOLUTION?...27
MEASURE: RMSThdn Subsystem (Domain: Sound)..28
MEASURE: RMSThdn?...28
MEASURE: RMSThdn:FILTER..28
MEASURE: RMSThdn:FILTER?...28
MEASURE: FFT Subsystem (Domain: Sound)...30
MEASURE: FFT?...30
MEASURE: FFT:dt?..30
MEASURE: FFT:PAGE...31
MEASURE: FFT:PAGE?...31
MEASURE: FFT:ZOOM...31
MEASURE: FFT:ZOOM?...31
MEASURE: FFT:F?...32
MEASURE: FFT:FSTArt..32
MEASURE: 12OCT Subsystem (Domain: Sound)...33
MEASURE: 12OCT?..33
MEASURE: 12OCT:dt?...33
MEASURE: 12OCT:RESOLUTION..34
MEASURE: 12OCT:RESOLUTION?..34
MEASURE: RT60 Subsystem (Domain: Sound)..35
MEASURE: RT60?...35
MEASURE: Vibration Introduction (Domain: Vibration)..36
MEASURE: VIBM Subsystem (Domain: Vibration)...37
MEASURE: VIBM:123?...37
MEASURE: VIBM:123:dt?...38
MEASURE: VIBM:FILTER...38
MEASURE: VIBM:FILTER?..39
MEASURE: VIBM:SPECTRUM:FILTER...39
MEASURE: VIBM:SPECTRUM:FILTER?..40
MEASURE: VIBM:SPECTRUM?..40
MEASURE: VIBM:SPECTRUM:dt?..41
MEASURE: VIBM:SPECTRUM:WEIGHTING...42
MEASURE: VIBM:SPECTRUM:WEIGHTING?...42
MEASURE: VIBM:SPECTRUM:RESOLUTION...42
MEASURE: VIBM:SPECTRUM:RESOLUTION?..42
MEASURE: VFFT Subsystem (Domain: Vibration)..43
MEASURE: VFFT?...43
MEASURE: VFFT:dt?...44
MEASURE: VFFT:PAGE..45
MEASURE: VFFT:PAGE?...45
MEASure: V12OCT Subsystem (Domain: Vibration) .. 47
 MEASure: V12OCT? .. 47
 MEASure: V12OCT:dt? .. 47
 MEASure: V12OCT:RESolution? .. 48
 MEASure: V12OCT:RESolution ... 48

INPUT Subsystem .. 49
 INPUT: SELECT .. 49
 INPUT: SELECT? .. 49
 INPUT: RANGE .. 49
 INPUT: RANGE? .. 49
 INPUT: PHANTom .. 50
 INPUT: PHANTom? ... 50

CALIBrate Subsystem ... 51
 CALibrate: MIC: TYPE? ... 51
 CALibrate: MIC: SENS: SOURCE? ... 51
 CALibrate: MIC: SENS: VALUE .. 52
 CALibrate: MIC: SENS: VALUE? ... 52

SYSTem Subsystem .. 53
 SYSTem: ERROR? .. 53
 SYSTem: KEY ... 54
 SYSTem: KLOCK .. 54
 SYSTem: KLOCK? ... 54
 SYSTem: SPEAKER: ONOFF ... 55
 SYSTem: SPEAKER: LEVEL ... 55
 SYSTem: LIMIted? .. 55
 SYSTem: OPTIons? .. 55
 SYSTem: MSD ... 56
 SYSTem: MSDMAC .. 56

Supplements ... 57

Automatic COM Port Detection ... 57

Accessing an XL2 over the Internet .. 58
 NetBox Gateway Mode ... 58
 Switching between NoiseScout and Gateway Mode .. 58
 SFTP Access ... 59
 COM Port Access ... 59
 COM Port Access SAMPLE Code ... 60
Purpose of the XL2 Remote Measurement

The XL2 Remote Measurement option enables you to query your XL2 measurement data from your PC via the USB interface, allowing you to program your own measurement application on your PC, e.g. for sound level monitoring or automated measurement tasks. The following XL2 measurement functions are supported:

- Sound level meter and spectrum analyzer SLMeter
- FFT analyzer
- Audio analyzer RMS/THDN
- High resolution spectral analyzer 1/12 Oct + Tol

NOTE - The following functions are not supported with the Remote Measurement Option:
- access to the XL2 file system
- setup of data presentation on your XL2 LCD
- logging and reporting to the internal SD card

The access to the XL2 file system is supported with the accessory „NetBox“ used in Gateway Mode. See the chapter „Accessing an XL2 over the Internet“ in this manual for more details.

The XL2 with serial number ending „E0“ or higher may power on automatically upon mains power is available. This auto start functionality is enabled by copying a txt-file with the file name „AutoOn.txt“ onto the SD Card. This allows to remotely control the XL2 as soon as power supply is available at the instrument.

XL2 Projector PRO

The XL2 Projector PRO displays your XL2 screen, in real-time via USB, on your PC. The virtual keyboard provides you with control of your XL2 Audio and Acoustic Analyzer from your PC, using mouse clicks.

Your XL2 Analyzer offers the facility to set limits for the maximum permitted sound level e.g. as prescribed by local authorities for live sound monitoring. In case such limits are exceeded, the XL2 Projector background color on your PC turns from green to yellow or red according to your defined limits.

XL2 Projector PRO runs with every XL2, there is no need to have any options installed on the XL2. The XL2 Projector PRO is available to you as a free download at https://my.nti-audio.com/support/xl2.

The optional „XL View“ and „Sound Level Predictor“ is dedicated for live sound monitoring applications. Its enabled by the Projector PRO Option or Remote Measurement Option upon installation on your XL2.

NOTE: The XL2 Projector function uses the „COM port“ USB mode. Click the SD-Card icon in the XL2 Projector PRO to open the XL2 File Explorer.
Remote Measurement Option required

To query measurement results from the XL2 remotely, the XL2 must be equipped with a Remote Measurement Option.

NOTE - If the XL2 Remote Measurement option is not installed, the instrument will respond to some basic commands like *IDN?, but will answer with the error "Parameter not available, license not installed" (Error No. 5).

Driver

The XL2 Analyzer communicates with the PC via the USB interface utilizing a virtual COM port. The required drivers will automatically be installed with the XL2 Projector PRO software.
Getting Started

Requirement: Make sure that you have installed the XL2 Projector PRO on your system. Together with the XL2 Projector PRO, the USB serial driver is installed, which is required for the Remote Measurement option of the XL2.

You receive the following "Getting Started" tools:

MICROSOFT EXCEL DEMO APPLICATION

This demo, written in visual basic for applications (VBA), queries XL2 data online into MS Excel and charts the sound level graph.

1. Connect the XL2 to your computer
2. On the XL2, select „COM port“ at the pop-up USB Mode
3. On your PC, open the file „XL2 Remote Monitoring Demo.xls"
4. Click the start button in the software -> the XL2 is started and logging starts on the PC screen.
5. The demo stops automatically after 20 log lines.

On your PC, press the Alt-F11 keys to access the open source code and extend the functionalities according your individual requirements.
LABVIEW DEMO APPLICATION

You can use the demo application in two ways. Use either the runtime version (runs without LabVIEW), or the LabVIEW source files (requires a LabVIEW 10 basic license).

RUNTIME VERSION

6. Select the folder „LabViewDemo\RuntimeInstall“
7. Start „setup.exe“ and follow the instructions on the screen. As soon as the installation has successfully completed, a shortcut is available in the Windows start menu.
8. Start „XL2SLMeterRemote“ under „All Programs → NTi Audio“.

9. In case any error messages are displayed, simply continue with these instructions.
10. Connect your XL2
 a) Connect your XL2 to your PC via USB and power-up the XL2. The XL2 displays the **USB Mode** window.
 b) Select **COM port** on your XL2.
 c) As soon as your XL2 is connected to your PC, the „Used virtual COM port“ changes from „COM1“ to another COM port.

NOTE – If the COM port used is higher than COM9, then the application will not open the COM port. In this case you need to change the number of the COM port in the windows device manager to a number lower than 10.

11. Upper plot
 The default measurement value is LAF. The data is immediately displayed in the upper plot area.

12. Lower plot
 The default measurement value is LAEQ. Press the „Start Measurement“ button to display the measurement results in the lower plot area.

13. Change measurement value
 The plotted measurement value can be changed by typing the value name into the „Measurement Value“ field of the plot below. A list of valid value names is listed in the section „MEASure:SLM:123?“ of this manual. Some measurement values require the Extended Acoustics Pack option of the XL2. To get a dt-value of a measurement, click the displayed dt button. For more details please refer to section „MEASure:SLM:123:dt?“ in this manual.

14. Commands
 The "Send String" of a plot shows the complete string, which is sent to your XL2 to acquire the measurement value. The "Receive String" of a plot shows all received measurement values. Use the scrollbar to view all values.
15. Setting time parameter

In the "Read Data Interval" you can change the speed of acquiring data from your XL2. The minimum interval is 0.1 second, represented by a value of 1. Enter the value 20 to acquire measurement results every two seconds. The "Timer in seconds" shows the current measurement timer value of your XL2. The "dt-time in seconds" shows the measured time between two consecutive measurement value requests. Use the scroll bar to view all request intervals.

LABVIEW SOURCE FILE VERSION

Open the file "XL2BroadBandPlot.vi" in the "LabViewDemo\SourceFiles\SLM" folder to run the application with LabVIEW. The application works as described in the Runtime Version section.

An additional demo is included as a source file, which plots the level RMS, THD+N + frequency time sweep. In order to run the THD demo application, open the File "XL2ThdPlot.vi in the "LabViewDemo\SourceFiles\THD" folder.
DEMOS WITH TERMINAL PROGRAM

The terminal program „HTerm” with the configuration file „XL2_Config.cfg” offers a quick introduction to handling the XL2 Remote Measurement commands.

Requirement: Make sure that you have installed the XL2 Projector PRO software on your PC, thereby ensuring that the serial driver, required for remote measuring, is available. Verify that the XL2 Projector PRO software functions correctly prior to continuing with the next steps.

1) Start the terminal program HTerm.exe:

2) Load the configuration File „XL2_Config.cfg”

3) HTerm displays the loaded XL2 configuration file:
4) Connect your XL2
 a) Connect your XL2 via USB to your PC and power-up the XL2. The XL2 displays the **USB Mode** window.
 b) Select **COM port** on your XL2.

5) Selecting the COM port in HTerm:
 a) Press the **R** button to refresh the port list
 b) Select the COM port used to communicate with your XL2 (e.g. your PC displays the com port assigned to the XL2 during the initial connection to your XL2).
 c) Press „Connect“ and wait for the status information of HTerm in the bottom line; as soon as it is connected successfully, the status line should show something like this:

6) First communication with your XL2:
 a) Double-click on „*idn?“ in the „Sequence Overview“ window on the left hand side.
 b) „*IDN?“ is shown on the transmitted data window.
 c) „NTiAudio, XL2, A2A-xxxx-D1, FW2.xx” is shown in the Received Data window.

7) Reset your XL2 to a defined status
 a) Execute the „*RST“ command to set your XL2 to a defined state. The RST command
 i) clears the error queue
 ii) stops any running measurement
 iii) exits any active profile
 iv) selects the SLMeter function
 v) resets parameters
 vi) locks the keyboard

8) Read measurement function
 a) Double-click „MEASure:Function?“
 b) The Received Data window shows „SLMeter“

9) Read measurement data
 a) Double-click „MEASure:INITiate“, this reads all the actual measurement results for post-processing on your PC.
 b) Double-click „MEASur:SLM:123: LAF?“
 c) The Received Data window shows e.g. „70.1 dB, OK“ (= the live sound level from „MEASure:INITiate“ before)
 d) Double-click any other parameter to read out further measurement results taken by the „MEASure:INITiate“ command.
10) Read measurement data
 a) Any measurement results not listed in the HTerm sequence overview can be read using the commands with „###“ (= placeholders for individual input values).
 b) Double-click „MEASure:INITiate“
 c) Double-click „MEASur:SLM:123: ###“
 d) Add the required characters into the „Input control“ window and press ENTER. In the example below, the value "LAS" is queried:

 ![HTerm window]

 11) Stopping the remote measurement
 a) Click the button „Disconnect“ in HTerm
 b) Disconnect your XL2 from the USB connection to your PC.
The commands are send in ASCII format through the virtual COM port to your XL2 Audio and Acoustic Analyzer. Every command transmission from your PC to your XL2 or vice versa must be terminated with "CR LF" (Carriage Return, Line Feed).

The measurement commands are divided into six groups (i.e. "subsystems").

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>Device status commands</td>
</tr>
<tr>
<td>INITiate</td>
<td>Status control for a measurement</td>
</tr>
<tr>
<td>MEASurement</td>
<td>Measurement result query commands</td>
</tr>
<tr>
<td>INPUT</td>
<td>Settings for Input signal path</td>
</tr>
<tr>
<td>CALIbrate</td>
<td>Microphone Calibration commands</td>
</tr>
<tr>
<td>SYSTem</td>
<td>System status commands</td>
</tr>
</tbody>
</table>

- The XL2 accepts the short or any variant of the full form of the commands.
- In the command list, the CAPITAL letters indicate the short form. However, the XL2 accepts both lowercase and UPPERCASE letters, i.e. commands are not case-sensitive.
- Multiple commands separated by semi-colons (";") are not supported.
- Errors are stored in an error queue and can be queried with the „SYSTem:ERROR?” command.
Command Notation & Descriptive Symbols

The XL2 command descriptions use headings to divide the syntax information into easily-readable parts. These headings and their meaning are listed below. If a heading does not apply to a command, it does not appear in the command syntax description.

<table>
<thead>
<tr>
<th>Usage</th>
<th>What the command does</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>The mode and system settings that must be active to execute the command</td>
</tr>
<tr>
<td>Parameter</td>
<td>The parameters to be set and their types</td>
</tr>
<tr>
<td>Answer</td>
<td>The possible answer(s) to a query command</td>
</tr>
<tr>
<td>Examples</td>
<td>Command examples are provided here. Short form and lowercase characters are randomly altered to remind the reader that both forms are allowed</td>
</tr>
<tr>
<td>Explanation</td>
<td>Additional explanations, hints and notes</td>
</tr>
</tbody>
</table>

The subsequent table lists the symbols that are used for the command description.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>:</td>
<td>Colons separate elements of an XL2 command.</td>
</tr>
<tr>
<td>[]</td>
<td>Square brackets enclose the list of available parameters, out of which 1 parameter must be selected.</td>
</tr>
<tr>
<td>\</td>
<td>A vertical line reads as an „OR“, i.e. this sign separates alternative parameters.</td>
</tr>
<tr>
<td>< ></td>
<td>Triangle brackets enclose the variable parameters that must be set for a user-defined value.</td>
</tr>
<tr>
<td>{ }</td>
<td>Braces have the same meaning as triangle brackets ("< >"), except that the enclosed parameters can be included several times.</td>
</tr>
<tr>
<td>,</td>
<td>Commas separate arguments in an arguments list.</td>
</tr>
<tr>
<td>?</td>
<td>The question mark indicates a query command.</td>
</tr>
<tr>
<td>()</td>
<td>Round brackets enclose comments.</td>
</tr>
<tr>
<td>🎧→</td>
<td>The string is sent from your PC to your XL2.</td>
</tr>
<tr>
<td>→ ♀</td>
<td>The string is returned from your XL2 to your PC.</td>
</tr>
</tbody>
</table>

NOTE – If a value is undefined, the XL2 returns the message `-999`.
My first program (a typical program skeleton)

When starting to write a program to query values from the XL2, we suggest using the following skeleton (code is written in Python 2.7):

```python
import time
import serial

# Query the Device Manager of your Windows PC to find out which COM port the
# system assigned to the XL2 and adapt the following line:
COM_PORT = "COM15"

xl2 = serial.Serial(COM_PORT, timeout=1)

# Reset the XL2 to default state (SLMeter, ...)
xl2.write('*RST\n')

# Start the measurement
xl2.write('INIT START\n')

time.sleep(3)  # Allow the XL2 to start the measurement

for i in range(10):
    xl2.write('MEAS:INIT\n')  # Triggers a measurement
    xl2.write('MEAS:SLM:123? LAS\n')  # Query LAS
    result = xl2.readline()
    print result,
    time.sleep(1)

# Stop the measurement (optional)
xl2.write('INIT STOP\n')
xl2.close()
```

Output of the program:

36.0 dB, OK
34.8 dB, OK
48.8 dB, OK
44.7 dB, OK
53.4 dB, OK
49.4 dB, OK
45.3 dB, OK
41.8 dB, OK
39.3 dB, OK
38.0 dB, OK
Device Status

*IDN?

Shortcut Identification: reads the unique identification of the XL2.
Availability always
Answer <Manufacturer>, <Unit>, <Serial Number>, <FW Version>
Example → *IDN?
→ NTiAudio,XL2,A2A-12345-D0,FW2.03

*RST

Shortcut Executes a device reset, and should be the first command when starting a remote session to ensure that all XL2 settings make sense for remote measuring.
Availability always
Example → *RST
Details It is highly recommended to execute this command first to avoid unwanted side effects.
The RST command ...
• clears the error queue
• stops any running measurement
• stops any running script
• exits any active profile
• selects the SLMeter function
• sets the following parameters
 o Append mode: OFF
 o Auto save: OFF
 o Logging: OFF
 o Events: OFF
 o Timer mode: CONTINUOUS
 o Range: MID
 o RMS/THDN Filter: Z-WEIGHTED
 o Input: XLR
 o Phantom Power: ON
 o RTA Source: LZF
 o RTA Resolution: TERZ
• locks the keyboard
• sets the precision of queried floating-point numbers to 'LCD'
Debug

ECHO

Shortcut
Returns the string after the command including separators. It is for debugging purpose only.

Availability always

Parameter <text> string

Answer <text> string

Example

INITiate Subsystem

INITiate

Shortcut Starts/ Stops a measurement

Availability SLMeter, FFT, 1/12 Oct, RT60

Parameter [START|STOP] string

Example

Details Time dependent parameters like LAeq, LAFmax, etc. are undefined until START has been initiated. The start procedure may last a few seconds. If required, query INIT:STATE? to see, whether the start procedure is finished. When a measurement is stopped with STOP, the calculation of time dependent parameters is stopped and the result stays constant.

INITiate:STATE?

Shortcut Queries the run status of a measurement

Availability always

Answer [STOPPED|FROZEN|SETTLING|RUNNING| PAUSED|UNDEFINED] string UNDEFINED when DSP is not responding

Example

www.nti-audio.com Debug << Commands 18
INITiate:STATe:SETTlingtime?

Shortcut
Queries the current settling time.

Availability
SLMeter, RT60

Answer
<string> 0.1 seconds resolution (1 decimal)
	<timer> sec, [OK|UNDEF]

Example

INIT:STAT:SET?
5.4 sec, ok

Details
When the settling time is 0, then a INIT START command will immediately start a measurement. Otherwise, the run status will first go to SETTLING when starting a measurement.
MEASure Subsystem

MEASure:FUNCtion

<table>
<thead>
<tr>
<th>Shortcut</th>
<th>Defines the active measurement function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>always</td>
</tr>
<tr>
<td>Parameter</td>
<td>`[SLMeter</td>
</tr>
</tbody>
</table>

Example

- \(\rightarrow \) MEASURE:FUNCTION SLMETER

Details

Switching between measurement functions may last 1-2 seconds.

MEASure:FUNCtion?

<table>
<thead>
<tr>
<th>Shortcut</th>
<th>Queries the active measurement function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>always</td>
</tr>
<tr>
<td>Answer</td>
<td>`[SLMeter</td>
</tr>
</tbody>
</table>

Example

- \(\rightarrow \) MEASURE:FUNCTION?
- \(\rightarrow \) SLMeter

MEASure:INITiate

<table>
<thead>
<tr>
<th>Shortcut</th>
<th>Triggers a measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>always</td>
</tr>
<tr>
<td>Example</td>
<td>(\rightarrow) MEAS:INIT</td>
</tr>
</tbody>
</table>

Details

All measurement results of the MEASure subsystem are stored synchronously by this command. Before the first MEAS:INIT has been sent, all measurement values are undefined. A typical workflow is

- \(*RST \)
- \(\) INIT START
- \(\) MEAS:INIT
- \(\) MEAS:SLM:123? <para1>
- \(\) MEAS:SLM:123? <para2>
- \(\) MEAS:INIT
- \(\) MEAS:SLM:123? <para1>
MEASURE:DTTIme?

Shortcut: Queries the time period used for the calculation of dt values. The value is active as long as the measurement is RUNNING, and is reset after each INIT:MEAS or INIT START command.

Availability: SLMeter, when RUNNING

Answer<

<table>
<thead>
<tr>
<th><timer></th>
<th>float</th>
<th>0.1 seconds resolution (1 decimal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sec, [OK</td>
<td>UNDEF]</td>
<td>string</td>
</tr>
</tbody>
</table>

Example

```plaintext
→ MEAS:INIT
  MEAS:TIMER?
  → 2.156522 sec, ok
```

Details

This exact time information is required to correctly combine EQ values acquired with the remote interface. In contrast to the XL2 internal logging, where the time interval between log lines is equidistant and therefore the dt time is not required when combining LEQ_dt values, measurements acquired with the remote interface have a certain time jitter. For combining EQ_dt values that are not equidistant, the accurate dt time of each LEQ_dt value is needed.

RECOMMENDATION: an LEQ of any time period can be calculated by summing up LE values and then calculate the LEQ = LE – 10^n log(PERIODE[sec]). For doing so, the dt time is not necessary.
MEASure:DEClmals

Shortcut
Defines the precision of queried floating-point numbers.

Availability
Always

Parameter
LCD|EXTENDED string only the first character is necessary

Example
MEASURE:DECI EXTENDED

Details
With the default setting 'LCD' all floating point numbers are returned in the same precision as seen on the units LCD. With 'EXTENDED', two additional digits are returned.

MEASure:DEClmals?

Shortcut
Queries the precision of queried floating-point numbers.

Availability
always

Answer
LCD|EXTENDED string

Example
MEASURE:DECI?
LCD

MEASure:DOMAin?

Shortcut
Queries the actual Domain of the XL2.

Availability
always

Answer
Sound|Vibration string

Example
MEASURE:Domain?
Sound

Details
If the Vibration Option is installed, the XL2 can be switched between sound and vibration domain manually or automatically with NTi ASD microphones or ASD vibration Sensors.

MEASure:VIBDbref? *(Domain: Vibration)*

Shortcut
Queries the dB reference for values acceleration, velocity and displacement.

Availability
Domain: Vibration

Parameter
none

Answer
<ACC dBref Level um/s^2, VEL dBref Level nm/s, DIS dBref level pm>

Example
Meas:Vibdbref ?
1.00um/s^2,1.00nm/s,1.00pm

Details
Reads all three dBref values from the device system settings / vibration page.
MEASURE: SLM Subsystem (Domain: Sound)

MEASURE: SLM:123?

Shortcut: Queries a broad band measurement result of the SLMeter.

Availability: SLMeter

Parameter: string
- \([LxS|LxSMAX|LxSMIN|\]
- \(LxF|LxFMAX|LxFMIN|\)
- \(LxEQ|Prev_LxEQ|\)
- \(LxFK|LxFKMAX|\)
- \(LCFk"|Prev_LCFK|\)
- \(LyEQ\{LyEQMax|\)
- \(k1|k2\)

Additional with installed Extended Acoustic Pack: string
- \([LxF|LxFMAX|LxFMIN|\]
- \(LAFT3|LAFT3EQ|\)
- \(LAFT5|LAFT5EQ|\)
- \(LxE|Ln\%\)
- \(LAFT5EQ-LAEQ\)
- \(LAEQ-LAEQ|LCEQ-LAEQ\]

Answer: float
- \(<Level,> dB,\)
- \([OK|UNDEF|LOW|OVLD|\)
- \(OPTION_REQUIRED]\)

Example:

\(\rightarrow\) INIT START
MEAS:INIT
MEAS:SLM:123? LASM

\(\rightarrow\) 53.8 dB, OK

Details: Returns a broad band result parameter that has been stored by the last MEAS:INIT command. If the parameter is unknown, a “;” is returned.

Statistic Values:
- For custom setting use the custom values to read, e.g.
 MEASURE:SLM:123? L33.3%
- Remotely changing/reading the settings is not implemented.
- Be aware of the decimal separator. Use the setting from the „System Settings“ page.

Call with multiple parameters: Queries up to 10 parameters with one command. The parameters must be separated by spaces.

Example:

\(\rightarrow\) INIT START
MEAS:INIT
MEAS:SLM:123? LASM LAFMAX LZSMAX LZFMAX

\(\rightarrow\) 52.1 dB, OK
Details

This command reduces the XL2 load when reading several values in short intervals (e.g. 0.1sec)

MEASure: SLM:123:dt?

Shortcut
Queries a broad band dt measurement result of the SLMeter.

Availability
SLMeter

Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[LxSMAX</td>
<td>LxSMIN]</td>
</tr>
<tr>
<td>[LxFMAX</td>
<td>LxFMIN]</td>
</tr>
<tr>
<td>LxEQ</td>
<td>LxPKMAX</td>
</tr>
</tbody>
</table>

Additional with installed Extended Acoustic Pack

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[LxIMAX</td>
<td>LxIMIN</td>
</tr>
</tbody>
</table>

Answer

<table>
<thead>
<tr>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td><Level,> dB,</td>
<td>float</td>
</tr>
<tr>
<td>[OK</td>
<td>UNDEF</td>
</tr>
<tr>
<td>OPTION_REQUIRED</td>
<td>NO_DT_VALUE]</td>
</tr>
</tbody>
</table>

Example

```plaintext
→ INIT START
  MEAS:INIT
  MEAS:SLM:123:dt? LASMAX
→  53.8 dB, OK
```

Details

Queries a broad band result parameter of the SLMeter that has been stored with the last MEAS:INIT command. dt measurements are cleared after each MEAS:INIT, so this function returns the e.g. LEQ between two MEAS:INIT commands. The values have the same meaning as the dt values found in XL2 log files.

If the parameter is unknown, a "," is returned.

Call with multiple parameters
Queries up to 10 Parameters with one command. The parameters must be separated by spaces.

Example

```plaintext
→ INIT START
  MEAS:INIT
  MEAS:SLM:123:dt? LASMAX LAFMAX LZSMAX LZFMAX
→  52.1 dB, OK
  54.8 dB, OK
  63.7 dB, OK
  65.3 dB, OK
```

Details

This command reduces the XL2 CPU load when reading several values in short intervals (e.g. 0.1sec)
MEASure:SLM:RTA?

Shortcut: Queries the spectral results of the SLMeter.
Availability: SLMeter
Parameter:
- [LIVE|MAX|MIN|EQ|CAPT|HOLD3|HOLD5|HLD10]
 - string

Additional with installed Extended Acoustic Pack
- [E|N%]
 - string

Answer:
- {Level,,} dB|dBu|dBV|V,
- [OK|UNDEF|OVLD|OPTION_REQUIRED]
 - float
 - string

Example:
- → INIT START
- MEAS:INIT
- MEAS:SLM:RTA? EQ
- ➤ 46.3,50.7,34.5,45.4,42.2,37.2,39.0,39.8,32.1,28.5,29.8,31.0 dB, LOW

Details: Queries the spectral results of the SLMeter that have been stored by the last MEAS:INIT command. If the parameter is unknown, a ";" is returned.

The unit (dB, dBu, dBV, V) is adopted by the setting of the user interface.

MEASure:SLM:RTA:dt?

Shortcut: Queries the dt spectral results of the SLMeter.
Availability: SLMeter
Parameter:
- [EQ]
 - string

Additional with installed Extended Acoustic Pack
- [E]
 - string

Answer:
- {Level,,} dB|dBu|dBV|V,
- [OK|UNDEF|OVLD|OPTION_REQUIRED]
 - float
 - string

Example:
- → INIT START
- MEAS:INIT
- MEAS:SLM:RTA:DT? EQ
- ➤ 46.3,50.7,34.5,45.4,42.2,37.2,39.0,39.8,32.1,28.5,29.8,31.0 dB, LOW
Details

Queries the spectral results parameter of the SLMeter that has been stored by the last MEAS:INIT command. dt measurements are cleared after each MEAS:INIT, so this function returns the LEQ of LE between two MEAS:INIT commands. The values have the same meaning as the dt values found in XL2 log files. If the parameter is unknown, a ";" is returned.

The unit (dB, dBi, dBV, V) is adopted by the setting of the user interface.

MEASure:SLM:RTA:WEIGhting

Shortcut
Defines the frequency and time weighting, in which the RTA results are acquired.

Availability
SLMeter

Parameter

\[[AF|AS|CF|CS|ZF|ZS|XF|XS] \]

String

Example

- MEAS:SLM:RTA:WEIG ZS

Details
Command is only accepted when SLMeter is stopped.

MEASure:SLM:RTA:WEIGhting?

Shortcut
Queries the frequency and time weighting, in which the RTA results are acquired.

Availability
SLMeter

Answer

\[[AF|AS|CF|CS|ZF|ZS|XF|XS] \]

String

Example

- MEAS:SLM:RTA:WEIG?
- ZS

MEASure:SLM:RTA:RESOlution

Shortcut
Defines the resolution, in which the RTA results are acquired.

Availability
SLMeter

Parameter

\[[OCT|TERZ] \]

String

Example

- MEAS:SLM:RTA:RESO TERZ

Details
Command is only accepted when SLMeter is stopped.
<table>
<thead>
<tr>
<th>MEASure:SLM:RTA:RESOlution?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shortcut</td>
</tr>
<tr>
<td>Availability</td>
</tr>
<tr>
<td>Answer</td>
</tr>
</tbody>
</table>
| **Example** | → MEAS:SLM:RTA:RESO?
 → TERZ |
MEASure: RMSThdn Subsystem (Domain: Sound)

MEASure:RMSThdn?

Shortcut
Queries a measurement result from the RMS+THDN meter

Availability
RMSTHD

Parameter
[LVL|THDN|THDN, DB|F] string

Answer
[value> float
[0, [OK|UNDEF|OVERLOAD]] | string
[db, [OK|UNDEF|OVERLOAD]] |
[Hz, [OK|UNDEF|OVERLOAD]]

Example
→ MEAS:INIT
 MEAS:RMST? LVL
→ 5.184e-6 V, OK
→ MEAS:RMST? THDN
→ 0.0028 %, OK
→ MEAS:RMST? THDN, DB
→ -94.8 dB, OK
→ MEAS:RMST? F
→ 127.101 Hz, OK

MEASure:RMSThdn:FILTer

Shortcut
Defines the frequency weighting filter for the RMS/THDn meter.

Availability
RMSTHD

Parameter
[Z-WEIGHTING|A-WEIGHTING| C-WEIGHTING| HP 100Hz| HP 400Hz| HP 19kHz| 22.4-22.4k] string

Example
→ MEAS:RMSTHD:FILTER HP 4

MEASure:RMSThdn:FILTer?

Shortcut
Queries the frequency weighting filter for the RMS/THDn meter.

Availability
RMSTHD

Answer
[Z-WEIGHTING|A-WEIGHTING| C-WEIGHTING| HP 100Hz| HP 400Hz| HP 19kHz| 22.4-22.4k] string

Example
→ MEAS:RMSTHD:FILTER?
→ 22.4-22.4k
MEASure: FFT Subsystem (Domain: Sound)

MEASure: FFT?

Shortcut: Queries a measurement result from the FFT analyzer

Availability: FFT

Parameter: [Live|Max|Min|EQ] string

Answer: {Level_n,} dB|dBu|dBV, V [OK|UNDEF|OVLD] string

Example:

```
MEAS:INIT

MEAS:FFT? Live

```

Details: Queries the spectral results of the FFT analyzer that have been stored by the last MEAS:INIT command. If the parameter is unknown, a ";" is returned.

The unit (dB, dBu, dBV, V) is adopted by the setting of the user interface.
MEASURE: FFT: dt?

Shortcut: Queries a measurement dt result from the FFT analyzer

Availability: FFT

Parameter: EQ

Answer:
- string: Eq
- float: n = 143

- Levels sorted from lowest to highest frequency

Example

```
MEAS: INIT
MEAS: FFT: dt? EQ
```

```
```

Details: Queries the spectral results of the FFT analyzer that have been stored by the last MEAS: INIT command. dt measurements are cleared after each MEAS: INIT, so this function returns the LEQ between two MEAS: INIT commands.

The unit (dB, dBU, dBV, V) is adopted by the setting of the user interface.

MEASURE: FFT: PAGE

Shortcut: Defines the frequency range page

Availability: FFT

Parameter: 20k|1k7|200|usr

- 20k: 20kHz
- 1k7: 1.7kHz
- 200: 200Hz
- usr: User-defined range

*‘usr’ is only available with installed Extended Acoustic Pack or Spectral Limits option

Example

```
MEAS: INIT
MEAS: FFT: PAGE 20k
```

www.nti-audio.com MEASURE: FFT Subsystem (Domain: Sound) << Commands 30
MEASure:FFT:PAGE?

Shortcut
Queries the selected frequency range page

Availability
FFT

Answer
```
20k|1k7|200|usr
```

string
'usr' is only available with installed „Extended Acoustic Pack“ or „Spectral Limits“ option

Example
```
MEAS:FFT:PAGE?
-> 20k
```

MEASure:FFT:ZOOM

Shortcut
Sets the zoom step

Availability
FFT with installed Extended Acoustic Pack or Spectral Limits Option

Parameter
```
0|1|2|...|9
```

string
See table in ‘MEAS:FFT:ZOOM?’

Example
```
MEAS:FFT:ZOOM 0
```

Details
With zoom=0, the FFT is set to calculate the spectrum of the whole frequency range, while e.g. with zoom=9 a 52 Hz part of the whole frequency range is calculated and shown. Where the 52 Hz range starts is defined with the command MEASure:FFT:FSTArt

MEASure:FFT:ZOOM?

Shortcut
Queries the current zoom step (the width of the calculated frequency range)

Availability
FFT

Answer
```
0|1|2|...|9
```

string
0: Δ = 20.0 kHz
1: Δ = 13.3 kHz
2: Δ = 6.7 kHz
3: Δ = 3.3 kHz
4: Δ = 1.7 kHz
5: Δ = 832 Hz
6: Δ = 416 Hz
7: Δ = 208 Hz
8: Δ = 104 Hz
9: Δ = 52 Hz

Example
```
MEAS:FFT:ZOOM?
-> 0
```
MEASure: FFT:F?

Shortcut
Queries the bin frequencies

Availability FFT

Answer $<f_n,> \text{ Hz}$

Example

$$\rightarrow \text{MEAS:FFT:F?}$$
$$\rightarrow 484.38, 625.00, 765.63, 906.25, 1046.88, 1187.50, 1328.13, 1468.75, 1609.38, 1750.00, 1890.63, 2031.25, 2171.88, 2312.50, 2453.13, 2593.75, 2734.38, 2875.00, 3015.63, 3156.25, 3296.88, 3437.50, 3578.13, 3718.75, 3859.38, 4000.00, 4140.63, 4281.25, 4421.88, 4562.50, 4703.13, 4843.75, 4984.38, 5125.00, 5265.63, 5406.25, 5546.88, 5687.50, 5828.13, 5968.75, 6109.38, 6250.00, 6390.63, 6531.25, 6671.88, 6812.50, 6953.13, 7093.75, 7234.38, 7375.00, 7515.63, 7656.25, 7796.88, 7937.50, 8078.13, 8218.75, 8358.75, 8500.00, 8640.63, 8781.25, 8921.88, 9062.50, 9203.13, 9343.75, 9484.38, 9625.00, 9765.63, 9906.25, 10046.88, 10187.50, 10328.13, 10468.75, 10609.38, 10750.00, 10890.63, 11031.25, 11171.88, 11312.50, 11453.13, 11593.75, 11734.38, 11875.00, 12015.63, 12156.25, 12296.88, 12437.50, 12578.13, 12718.75, 12859.38, 13000.00, 13140.63, 13281.25, 13421.88, 13562.50, 13703.13, 13843.75, 13984.38, 14125.00, 14265.63, 14406.25, 14546.88, 14687.50, 14828.13, 14968.75, 15109.38, 15250.00, 15390.63, 15531.25, 15671.88, 15812.50, 15953.13, 16093.75, 16234.38, 16375.00, 16515.63, 16656.25, 16796.88, 16937.50, 17078.13, 17218.75, 17359.38, 17500.00, 17640.63, 17781.25, 17921.88, 18062.50, 18203.13, 18343.75, 18484.38, 18625.00, 18765.63, 18906.25, 19046.88, 19187.50, 19328.13, 19468.75, 19609.38, 19750.00, 19890.63, 20031.25, 20171.88, 20312.50, 20453.13 Hz

MEASure: FFT:FSTART

Shortcut Defines the frequency of the first bin

Availability FFT with installed Extended Acoustic Pack or Spectral Limits Option

Parameter f float in Hz

Example

$$\rightarrow \text{MEAS:FFT:FSTART 58.00}$$

Details Defines the frequency of the first bin of the Zoom FFT and automatically sets the analyzer to the 'usr' page. Not all combinations of 'zoom level' and 'start frequency' are valid, but the XL2 will choose the settings closest to the parameter. We suggest first using the manual user interface of the XL2 to get a feeling for valid settings.

The MEAS:FFT:F command can be used to verify the setting.
MEASure: 12OCT Subsystem (Domain: Sound)

MEASure:12OCT?

Shortcut Queries the spectral results of the 1/12 Octave analyzer.

Availability 1/12 Oct (requires installed Spectral Limits Option)

Parameter

<table>
<thead>
<tr>
<th>string</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Live</td>
</tr>
</tbody>
</table>

Answer

<table>
<thead>
<tr>
<th>float</th>
</tr>
</thead>
<tbody>
<tr>
<td>{Level_n,}</td>
</tr>
<tr>
<td>dB</td>
</tr>
<tr>
<td>[OK</td>
</tr>
<tr>
<td>OPTION_REQUIRED}</td>
</tr>
</tbody>
</table>

* Spectrum + 2 broad band results, as displayed on the XL2 screen.

Example

```plaintext
MEAS:INIT
MEAS:12OCT? Live
MEAS:12OCT? EQ
```

```plaintext
55.5,34.4,44.0,39.4,34.9,29.4,29.2,27.6,40.1,41.1,38.8,
44.1,56.2 dB, OK
```

Details Queries the spectral results of the 1/12 Octave analyzer that have been stored by the last MEAS:INIT command. If the parameter is unknown, a ;" is returned.

If voltage (V) is selected as reading unit on the XL2, then the result is returned in engineering format (e.g. 1.234e-3)

MEASure:12OCT:dt?

Shortcut Queries the spectral dt results of the 1/12 Octave analyzer.

Availability 1/12 Oct (requires installed Spectral Limits Option)

Parameter

<table>
<thead>
<tr>
<th>string</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ</td>
</tr>
</tbody>
</table>

Answer

<table>
<thead>
<tr>
<th>float</th>
</tr>
</thead>
<tbody>
<tr>
<td>{Level_n,}</td>
</tr>
<tr>
<td>dB</td>
</tr>
<tr>
<td>[OK</td>
</tr>
<tr>
<td>OPTION_REQUIRED}</td>
</tr>
</tbody>
</table>

* Spectrum + 2 broad band results, as displayed on the XL2 screen.

Example

```plaintext
MEAS:INIT
MEAS:12OCT:dt? EQ
```

```plaintext
55.5,34.4,44.0,39.4,34.9,29.4,29.2,27.6,40.1,41.1,38.8,
44.1,56.2 dB, OK
```

Details Queries the spectral results of the 1/12 Octave analyzer that have been stored by the last MEAS:INIT command. dt measurements are cleared after each
MEAS:INIT, so this function returns the LEQ between two MEAS:INIT commands.

If voltage (V) is selected as reading unit on the XL2, then the result is returned in engineering format (e.g. 1.234e-3)

MEASure:12OCT:RESOlution

<table>
<thead>
<tr>
<th>Shortcut</th>
<th>Defines the resolution, in which the 1/12 Octave analyzer results are acquired.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>1/12 Oct (requires installed Spectral Limits Option)</td>
</tr>
<tr>
<td>Parameter</td>
<td>[1/1</td>
</tr>
<tr>
<td>Example</td>
<td>MEAS:12OCT:RESO 1/3</td>
</tr>
</tbody>
</table>

MEASure:12OCT:RESOlution?

<table>
<thead>
<tr>
<th>Shortcut</th>
<th>Queries the resolution, in which the 1/12 Octave analyzer results are acquired.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>1/12 Oct (requires installed Spectral Limits Option)</td>
</tr>
<tr>
<td>Answer</td>
<td>[1/1</td>
</tr>
<tr>
<td>Example</td>
<td>MEAS:12OCT:RESO?</td>
</tr>
<tr>
<td></td>
<td>1/3</td>
</tr>
</tbody>
</table>
MEASure: RT60 Subsystem (Domain: Sound)

MEASure:RT60 ?

Shortcut
Queries the results of the RT60 analyzer.

Availability
RTA

Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[AVG]</td>
<td>string</td>
</tr>
</tbody>
</table>

Answer

- `{t,} sec,` float
- `[OK]` float

- 1/1 Oct: n = 8
- 1/3 Oct: n = 32

Example

```
MEAS:RT60? AVG
```

```
3.2, 2.9, 2.4, 2.2, 2.7, 2.6, 3.2, 2.8 sec, OK
```

Details
Queries the averaged results of the RT60 Octave analyzer. MEAS:INIT command is not required. If the parameter is unknown, a ";" is returned.
MEASure: Vibration Introduction (Domain: Vibration)

With the Vibration Option installed on your XL2, you can switch the XL2 into the Vibration Domain, thereby turning the XL2 into a device for measuring vibration. There are no functions that cross over between the XL2 as a sound-measuring device and the XL2 as a vibration-measuring device. Each has their own individual settings. There is also no remote command to switch between the Sound and Vibration domains; the switch has to be done on the XL2 itself (you have to change the sensor anyway).

The XL2 can be switched between Sound and Vibration Domain,
a) manually in the Calibration screen. (not possible while an ASD Sensor is connected)
b) automatically when you connect an NTi ASD Microphone or NTi ASD Vibration Sensor.

The current Domain can be read using the remote command Measure:Domain?. The Vibration Domain provides an additional Vibration Setup page. Use the remote command Measure:dBref? to read the reference values for all Vibration dB units. These reference values are valid for the measurement functions VIBM, VFFT and V12OCT.

The Units of the remote output correspond to what you see on the device screen. In the Vibration Setup page, you specify your preference for Metric or Imperial units. Within the measurement function you select individual linear or logarithmic units.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Acceleration</th>
<th>Velocity</th>
<th>Displacement</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric</td>
<td>m/s²</td>
<td>m/s</td>
<td>m</td>
<td>m, mm, μm, nm, pm</td>
</tr>
<tr>
<td>Imperial</td>
<td>in/s²</td>
<td>in/s</td>
<td>in</td>
<td>in, mil, uin, nin, pin</td>
</tr>
<tr>
<td>dB</td>
<td>dBA</td>
<td>dBV</td>
<td>dBd</td>
<td>Ref: pm/s², nm/s, pm</td>
</tr>
<tr>
<td>Gravity</td>
<td>g</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
MEASure: VIBM Subsystem (Domain: Vibration)

MEASure:VIBM:123?

Shortcut
Queries a broad band measurement result of the VibMeter.

Availability
VibMeter

Parameter
- \[xxxS|xxxSMAX|xxxSMIN|x
- \[xxxF|xxxFMAX|xxxFMIN|x
- \[xxxEQ|xxxPrev_eq|x
- \[xxx1"|xxx2"|xxx4"|xxx8"x
- \[xxxPK|xxxPKMAX|x
- \[xxxPkPpk|xxxPkPpkMAX]\n
string
Replace as follows:
\[xxx = \[acc|vel|dis]\n
Additional with installed Extended Acoustic Pack
\[xxxE|velFT30|velFT30eq]\n
string

Answer
- \[Level,> unit,|OK|UNDEF|LOW|OVLD|\n- \|OPTION_REQUIRED]\n
float
Unit see table in Vibration Introduction

Example

\[→ INIT START
MEAS:INIT
MEAS:VIBM:123? accFMAX\n\[→ 9.84 m/s², OK\n
Details
Returns a broad band result parameter that has been stored by the last MEAS:INIT command.
If the parameter is unknown, a ";" is returned.
The unit is always the same as in the user interface.

Call with multiple parameters
Queries up to 10 parameters with one command. The parameters must be separated by spaces.

Example

\[→ INIT START
MEAS:INIT
MEAS:VIBM:123? accFMAX velFMAX disFMAX\n\[→ 9.84 m/s², OK
1.96e-2 m/s, OK
3.95e-5 m, OK\n
Details
This command reduces the XL2 load when reading several values in short intervals (e.g. 0.1sec)
MEASURE: VIBM:123:dt?

Shortcut: Queries a broad band dt measurement result of the VibMeter.

Availability: VibMeter

Parameter:
- \([xxx\text{SMAX}|xxx\text{SMIN}\]
- \([xxx\text{FMAX}|xxx\text{FMIN}\]
- \([xxx\text{EQ}|xxx\text{PkMAX}|xxx\text{PkPKMAX}\]

Replace as follows:
- \(xxx = \{\text{acc}|\text{vel}|\text{dis}\}\)

Additional with installed Extended Acoustic Pack:
\([xxx\text{E}]\)

Answer:
- \(<\text{Level},>\text{ unit},\>
- \([\text{OK}|\text{UNDEF}|\text{LOW}|\text{OVLD}|\text{OPTION_REQUIRED}|\text{NO_DT_VALUE}\]

Example:

\(\rightarrow\) INIT START
\nMEAS:INIT
\nMEAS:VIBM:123:dt? \ accEQ
\n\(\rightarrow\) 3.99e-4 m/s², OK

Details:
Queries a broad band result parameter of the VibMeter that has been stored with the last MEAS:INIT command. dt measurements are cleared after each MEAS:INIT, so this function returns the e.g. LEQ between two MEAS:INIT commands. The values have the same meaning as the dt values found in XL2 log files.

If the parameter is unknown, a ";" is returned.
The unit is always the same as in the user interface.

Call with multiple parameters:
Queries up to 10 Parameters with one command. The parameters must be separated by spaces.

Example:

\(\rightarrow\) INIT START
\nMEAS:INIT
\nMEAS:VIBM:123:dt? \ acceq \ veleq \ diseq
\n\(\rightarrow\) 4.32e-4 m/s², OK
2.51e-5 m/s, OK
3.37e-6 m, OK

Details:
This command reduces the XL2 CPU load when reading several values in short intervals (e.g. 0.1sec).
MEASure:VIBM:FILTer

Shortcut
Set the actual filter for the VibMeter.

Availability
VibMeter

Parameter
[Flat|1-80Hz|1-315Hz]

Answer
none

Example

\[\rightarrow \text{MEAS:VIBM:Filter Flat}\]

Details
Filter is used for broadband values and can be used for the spectrum with separate command. Command is only accepted when measurement is stopped.

MEASure:VIBM:FILTer?

Shortcut
Queries the actual filter from the VibMeter.

Availability
VibMeter

Parameter
none

Answer
[Flat|1-80Hz|1-315Hz]

Example

\[\rightarrow \text{MEAS:VIBM:Filter?}\\ \rightarrow \text{Flat}\]

MEASure:VIBM:SPECTrum:FILTer

Shortcut
Sets the actual spectrum filter setting On or Off.

Availability
VibMeter

Parameter
[On|Off]

Answer
None

Example

\[\rightarrow \text{MEAS:VIBM:SPEC:Filter ON}\]

Details
Here you decide to use the actual filter for the spectrum or not. The actual filter is set in the broadband screen or with the MEASure:VIBM:FILTer command. E.g. when the actual broadband filter is „1-8Hz“, On uses this Filter, Off uses Flat for the spectrum.

Note: When the broadband filter is „Flat“, switching On and Off in the spectrum makes no difference.

Command is only accepted when measurement is stopped.
MEASure:VIBM:SPECTrum:FILTER ?

Shortcut Queries the actual spectrum Filter setting.

Availability VibMeter

Parameter none

Answer [On|Off] string

Example

\rightarrow MEAS:VIBM:SPEC:Filter?
\rightarrow Off

MEASure:VIBM:SPECTrum?

Shortcut Queries the spectral result of the VibMeter.

Availability VibMeter

Parameter

[LIVE|MAX|MIN]

EQ|CAPT

HOLD3|HOLD5|HLD10]

Additional with installed Extended Acoustic Pack[E]

string

Answer

{Level,n,} unit,

[OK|UNDEF|OVLD]

OPTION_REQUIRED]

Example

\rightarrow INIT START
MEAS:INIT
MEAS:VIBM:SPEC? EQ
\rightarrow 5.76e-6,8.49e-6,3.80e-6,1.11e-5,8.60e-6,4.32e-6,3.07e-6,2.63e-6,1.61e-6,8.54e-7,6.79e-7,5.27e-7,3.63e-7,2.92e-7,2.85e-7,2.11e-7,1.66e-7,1.20e-7,9.03e-8,8.28e-8,5.87e-8,8.574e-8,4.05e-8,3.46e-8,2.73e-8,2.40e-8,1.90e-8,1.53e-8,1.34e-8,1.08e-8,8.91e-9,7.36e-9,6.38e-9,5.15e-9,4.33e-9,3.41e-9 m/s, OK

Details

Queries the spectral result of the VibMeter that has been stored by the last MEAS:INIT command. If the parameter is unknown, a "" is returned.

The unit is always the same as in the user interface.
MEASure:VIBM:SPECtrum:dt?

<table>
<thead>
<tr>
<th>Shortcut</th>
<th>Queries the dt spectral result of the VibMeter.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>VibMeter</td>
</tr>
<tr>
<td>Parameter</td>
<td>string</td>
</tr>
<tr>
<td>Additional with installed Extended Acoustic Pack[E]</td>
<td>string</td>
</tr>
<tr>
<td>Answer</td>
<td>float</td>
</tr>
<tr>
<td>{Level_n,} unit, [OK</td>
<td>UNDEF</td>
</tr>
<tr>
<td>Example</td>
<td>Queries the spectral result parameters of the VibMeter that has been stored by the last MEAS:INIT command. dt measurements are cleared after each MEAS:INIT, so this function returns the LEQ of LE between two MEAS:INIT commands. The values have the same meaning as the dt values found in XL2 log files. If the parameter is unknown, a ";" is returned.</td>
</tr>
<tr>
<td>Details</td>
<td>The unit is always the same as in the user interface.</td>
</tr>
</tbody>
</table>

Example:

```
→ INIT START
MEAS:INIT
MEAS:VIBM:SPEC:DT? EQ
→ 8.47e-5,5.52e-5,7.85e-5,6.17e-5,5.64e-5,5.88e-5,3.73e-5,4.27e-5,4.01e-5,4.57e-5,4.03e-5,3.37e-5,3.11e-5,3.53e-5,3.31e-5,3.00e-5,3.50e-5,3.53e-5,3.44e-5,3.23e-5,3.49e-5,3.40e-5,3.59e-5,3.63e-5,3.51e-5,3.81e-5,3.72e-5,3.89e-5,4.00e-5,4.07e-5,4.27e-5,4.43e-5,4.78e-5,4.97e-5,5.30e-5,5.34e-5 m/s², OK
```
MEASure:VIBM:SPECTrum:WEIGHTing

Shortcut
Defines the measure and time weighting, in which the spectrum result is acquired.

Availability
VibMeter

Parameter
\[\text{string}\]
\[aF|aS|vF|vS|dF|dS]\n
Example
\[\rightarrow \text{MEAS:VIBM:SPECT:WEIG ds}\]

Details
Command is only accepted when measurement is stopped.

MEASure:VIBM:SPECTrum:WEIGHTing?

Shortcut
Queries the measure and time weighting, in which the spectrum result is acquired.

Availability
VibMeter

Answer
\[\text{string}\]
\[aF|aS|vF|vS|dF|dS]\n
Example
\[\rightarrow \text{MEAS:VIBM:SPECT:WEIG?}\]
\[\rightarrow \text{aS}\]

MEASure:VIBM:SPECTrum:RESOlution

Shortcut
Defines the resolution, in which the spectrum result is acquired.

Availability
VibMeter

Parameter
\[\text{string}\]
\[\text{OCT|TERZ}\]

Example
\[\rightarrow \text{MEAS:VIBM:SPECT:RESO TERZ}\]

Details
Command is only accepted when measurement is stopped.

MEASure:VIBM:SPECTrum:RESOlution?

Shortcut
Queries the resolution, in which the spectrum result is acquired.

Availability
VibMeter

Answer
\[\text{string}\]
\[\text{OCT|TERZ}\]

Example
\[\rightarrow \text{MEAS:VIBM:SPECT:RESO?}\]
\[\rightarrow \text{TERZ}\]
MEASure: VFFT Subsystem (Domain: Vibration)

MEASure:VFFT?

Shortcut
Queries a measurement result from the VFFT analyzer.

Availability
VFFT

Parameter
\[\text{[Live|Max|Min|EQ]}\] \(\text{string}\)

Answer
\{(\text{[Level,\,...]} \text{unit,} \text{[OK|UNDEF|OVLD]}\} \(\text{float}\) \(n = 143\)

Levels sorted from lowest to highest frequency. For the unit, see table in capture „Vibration Introduction”.

Example

\[\rightarrow\text{MEAS:INIT}\]
\[\rightarrow\text{MEAS:VFFT? Live}\]
\[1.30e-3,2.58e-3,6.66e-3,2.94e-2,6.02e-1,9.85e-1,4.00e-1,1.69e-2,4.58e-3,1.88e-3,9.47e-4,5.42e-4,3.38e-4,2.24e-4,1.56e-4,1.13e-4,8.42e-5,6.44e-5,5.03e-5,4.01e-5,3.30e-5,2.70e-5,2.18e-5,1.97e-5,1.58e-5,1.40e-5,1.21e-5,1.06e-5,9.67e-6,8.82e-6,8.49e-6,7.01e-6,6.07e-6,6.26e-6,5.62e-6,4.78e-6,5.51e-6,5.65e-6,4.93e-6,4.38e-6,4.34e-6,4.35e-6,3.81e-6,3.20e-6,4.40e-6,3.76e-6,3.80e-6,3.80e-6,4.97e-6,6.47e-6,2.88e-6,2.89e-6,2.85e-6,2.48e-6,5.24e-6,2.18e-6,2.92e-6,2.14e-6,2.28e-6,3.56e-6,2.40e-6,6.23e-6,2.18e-6,2.45e-6,2.37e-6,2.77e-6,2.69e-6,2.44e-6,2.29e-6,2.54e-6,3.04e-6,2.41e-6,2.76e-6,1.97e-6,1.91e-6,2.49e-6,2.57e-6,2.43e-6,2.14e-6,6.2.38e-6,2.37e-6,2.43e-6,3.56e-6,3.55e-6,3.02e-6,6.3.05e-6,1.71e-6,2.31e-6,2.88e-6,2.81e-6,2.65e-6,6.1.77e-6,1.57e-6,1.66e-6,1.87e-6,1.99e-6,1.87e-6,6.1.94e-6,1.83e-6,2.22e-6,2.08e-6,2.42e-6,2.44e-6,1.91e-6,2.49e-6,2.17e-6,1.79e-6,1.76e-6,1.98e-6,6.2.62e-6,2.62e-6,2.04e-6,2.08e-6,2.63e-6,2.21e-6,1.94e-6,2.68e-6,2.53e-6,1.92e-6,1.97e-6,1.85e-6,6.1.88e-6,1.77e-6,1.73e-6,2.14e-6,1.84e-6,2.34e-6,1.62e-6,1.67e-6,2.18e-6,1.64e-6,1.46e-6,1.61e-6,6.2.76e-6,2.95e-6,2.17e-6,2.04e-6,2.53e-6,2.50e-6,6.2.79e-6,2.67e-6,1.82e-6,1.80e-6 g, OK\]

Details
Queries the spectral results of the VFFT analyzer that have been stored by the last MEAS:INIT command. If the parameter is unknown, a “;” is returned.

The unit is always the same as in the user interface.
MEASure:VFFT:dt?

<table>
<thead>
<tr>
<th>Shortcut</th>
<th>Queries a measurement dt result from the VFFT analyzer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>VFFT</td>
</tr>
<tr>
<td>Parameter</td>
<td>EQ</td>
</tr>
<tr>
<td></td>
<td>string</td>
</tr>
<tr>
<td>Answer</td>
<td>(Level,_) unit,</td>
</tr>
<tr>
<td></td>
<td>[OK</td>
</tr>
<tr>
<td></td>
<td>float</td>
</tr>
<tr>
<td></td>
<td>string</td>
</tr>
<tr>
<td>Example</td>
<td>MEAS:INIT</td>
</tr>
<tr>
<td></td>
<td>MEAS:VFFT:dt? EQ</td>
</tr>
<tr>
<td></td>
<td>2.65e-2,2.63e-2,2.71e-2,2.64e-2,2.72e-2,2.78e-2,2.84e-2,</td>
</tr>
<tr>
<td></td>
<td>2.88e-2,2.95e-2,2.88e-2,2.85e-2,2.86e-2,2.90e-2,2.00e-2,</td>
</tr>
<tr>
<td></td>
<td>2.67e-2,2.59e-2,2.61e-2,2.43e-2,2.42e-2,2.50e-2,2.43e-2,</td>
</tr>
<tr>
<td></td>
<td>2.52e-2,2.58e-2,2.83e-2,2.94e-2,2.78e-2,2.88e-2,2.87e-2,</td>
</tr>
<tr>
<td></td>
<td>2.71e-2,2.48e-2,2.43e-2,2.38e-2,2.37e-2,2.61e-2,2.53e-2,</td>
</tr>
<tr>
<td></td>
<td>2.65e-2,2.62e-2,2.53e-2,2.76e-2,2.74e-2,2.52e-2,2.63e-2,</td>
</tr>
<tr>
<td></td>
<td>2.54e-2,2.57e-2,2.74e-2,2.73e-2,2.66e-2,2.85e-2,2.82e-2,</td>
</tr>
<tr>
<td></td>
<td>2.84e-2,2.95e-2,2.60e-2,2.43e-2,2.58e-2,2.78e-2,2.84e-2,</td>
</tr>
<tr>
<td></td>
<td>2.94e-2,2.85e-2,3.01e-2,2.89e-2,2.70e-2,2.66e-2,2.74e-2,</td>
</tr>
<tr>
<td></td>
<td>2.64e-2,2.75e-2,2.77e-2,2.81e-2,2.97e-2,2.76e-2,2.59e-2,</td>
</tr>
<tr>
<td></td>
<td>2.61e-2,2.78e-2,2.76e-2,2.74e-2,2.90e-2,2.84e-2,2.61e-2,</td>
</tr>
<tr>
<td></td>
<td>2.83e-2,2.64e-2,2.44e-2,2.63e-2,2.46e-2,2.59e-2,2.72e-2,</td>
</tr>
<tr>
<td></td>
<td>2.81e-2,2.80e-2,2.68e-2,2.74e-2,2.78e-2,2.52e-2,2.48e-2,</td>
</tr>
<tr>
<td></td>
<td>2.70e-2,2.64e-2,2.77e-2,2.61e-2,2.70e-2,2.15e-2,3.07e-2,</td>
</tr>
<tr>
<td></td>
<td>2.64e-2,2.82e-2,3.10e-2,2.96e-2,2.84e-2,2.63e-2,2.88e-2,</td>
</tr>
<tr>
<td></td>
<td>2.68e-2,2.89e-2,2.83e-2,2.72e-2,2.88e-2,2.77e-2,2.49e-2,</td>
</tr>
<tr>
<td></td>
<td>2.92e-2,2.98e-2,2.81e-2,2.72e-2,2.63e-2,2.80e-2,2.93e-2,</td>
</tr>
<tr>
<td></td>
<td>2.65e-2,2.60e-2,2.81e-2,2.75e-2,2.96e-2,2.14e-2,3.16e-2,</td>
</tr>
<tr>
<td></td>
<td>2.78e-2,2.74e-2,2.9, OK</td>
</tr>
</tbody>
</table>

Details

Queries the spectral results of the VFFT analyzer that have been stored by the last MEAS:INIT command. dt measurements are cleared after each MEAS:INIT, so this function returns the LEQ between two MEAS:INIT commands.

The unit is always the same as in the user interface.
MEASure:VFFT:PAGE

Shortcut: Defines the frequency range page

Availability: VFFT

Parameter:

<table>
<thead>
<tr>
<th>string</th>
</tr>
</thead>
<tbody>
<tr>
<td>1k7</td>
</tr>
</tbody>
</table>

'usr' is only available with installed „Extended Acoustic“ Pack or „Spectral Limits option“

Example:

→ MEAS:VFFT:PAGE 1k7

MEASure:VFFT:PAGE?

Shortcut: Queries the selected frequency range page

Availability: VFFT

Answer:

<table>
<thead>
<tr>
<th>string</th>
</tr>
</thead>
<tbody>
<tr>
<td>1k7</td>
</tr>
</tbody>
</table>

'usr' is only available with installed „Extended Acoustic Pack“ or „Spectral Limits“ option

Example:

→ MEAS:VFFT:PAGE?

→ 1k7

MEASure:VFFT:ZOOM

Shortcut: Sets the zoom step

Availability: VFFT with installed Extended Acoustic Pack or Spectral Limits Option

Parameter:

<table>
<thead>
<tr>
<th>string</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

See table in 'MEAS:VFFT:ZOOM?'

Example:

→ MEAS:VFFT:ZOOM 0

Details:

With zoom=0, the VFFT is set to calculate the spectrum of the whole frequency range, while e.g. with zoom=9 a 52 Hz part of the whole frequency range is calculated and shown. Where the 52 Hz range starts is defined with the command MEASure:VFFT:FSTArt

MEASure:VFFT:ZOOM?

Shortcut: Queries the current zoom step (the width of the calculated frequency range)

Availability: VFFT

Answer:

<table>
<thead>
<tr>
<th>string</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

0: Δ = 20.0 kHz
1: Δ = 13.3 kHz
2: Δ = 6.7 kHz
3: Δ = 3.3 kHz
4: Δ = 1.7 kHz
5: Δ = 832 Hz
6: Δ = 416 Hz
MEASure: VFFT: Subsystem (Domain: Vibration)

MEAS: VFFT: ZOOM?

Example

MEAS: VFFT: F

MEAS: VFFT: FSTART

Example

Details

The MEAS: VFFT: F command can be used to verify the setting.
MEASure: V12OCT Subsystem (Domain: Vibration)

MEASure: V12OCT?

Shortcut Queries the spectral results of the 1/12 Octave analyzer.
Availability 1/12 Oct (requires installed Spectral Limits Option)
Parameter \([\text{Live}|\text{Max}|\text{Min}|\text{EQ}|\text{EQ1}|\text{EQ4}]\)
Answer \(\{\text{Level},\} \text{ unit,} \)
\([\text{OK}|\text{UNDEF}|\text{OVLD}|\text{OPTION_REQUIRED}]\)

\begin{align*}
1/1 & \text{ Oct: } n = 11 + 2* , \ f_{\text{start}} = 1.00 \text{ Hz} \\
1/3 & \text{ Oct: } n = 33 + 2* , \ f_{\text{start}} = 0.80 \text{ Hz} \\
1/6 & \text{ Oct: } n = 66 + 2* , \ f_{\text{start}} = 0.75 \text{ Hz} \\
1/12 & \text{ Oct: } n = 132 + 2* , \ f_{\text{start}} = 0.73 \text{ Hz}
\end{align*}

* Spectrum + 2 broad band results, as displayed on the XL2 screen. For the unit, see table in capture „Vibration Introduction“.

Example \(\rightarrow\) MEAS:INIT
MEAS:V12OCT? Live
\(\rightarrow\) \(8.66e-5,3.24e-5,1.08e-4,8.72e-5,8.71e-5,5.97e-5,6.66e-5,6.28e-5,6.75e-5,7.33e-5,7.50e-5,2.51e-4,-999 \text{ m/s}^2, \text{ OK}\)

Details Queries the spectral results of the 1/12 Octave analyzer that have been stored by the last MEAS:INIT command. If the parameter is unknown, a "," is returned.

MEASure: V12OCT:dt?

Shortcut Queries the spectral dt results of the 1/12 Octave analyzer.
Availability 1/12 Oct (requires installed Spectral Limits Option)
Parameter \(\text{EQ}\)
Answer \(\{\text{Level},\} \text{ unit,} \)
\([\text{OK}|\text{UNDEF}|\text{OVLD}|\text{OPTION_REQUIRED}]\)

\begin{align*}
1/1 & \text{ Oct: } n = 11 + 2* , \ f_{\text{start}} = 16.0 \text{ Hz} \\
1/3 & \text{ Oct: } n = 33 + 2* , \ f_{\text{start}} = 12.5 \text{ Hz} \\
1/6 & \text{ Oct: } n = 66 + 2* , \ f_{\text{start}} = 11.8 \text{ Hz} \\
1/12 & \text{ Oct: } n = 132 + 2* , \ f_{\text{start}} = 11.5 \text{ Hz}
\end{align*}

* Spectrum + 2 broad band results, as displayed on the XL2 screen. For the unit, see table in capt. „Vibration Introduction“.

Example \(\rightarrow\) MEAS:INIT
MEAS:V12OCT:dt? EQ
\(\rightarrow\) \(9.15e-5,7.04e-5,6.41e-5,6.82e-5,5.53e-5,5.68e-5,6.04e-5,5.07e-5,6.30e-5,6.80e-5,7.47e-5,2.23e-4,-999 \text{ m/s}^2, \text{ OK}\)

Details Queries the spectral results of the 1/12 Octave analyzer that have been stored by the last MEAS:INIT command. dt measurements are cleared after each MEAS:INIT, so this function returns the LEQ between two MEAS:INIT commands.
MEASure:V12OCT:RESOlution

Shortcut
Defines the resolution, in which the 1/12 Octave analyzer results are acquired.

Availability
1/12 Oct (requires installed Spectral Limits Option)

Parameter
[1/1|1/3|1/6|1/12] \(string \)

Example

\[
\text{MEAS:V12OCT:RESO} 1/3
\]

MEASure:V12OCT:RESOlution?

Shortcut
Queries the resolution, in which the 1/12 Octave analyzer results are acquired.

Availability
1/12 Oct (requires installed Spectral Limits Option)

Answer
[1/1|1/3|1/6|1/12] \(string \)

Example

\[
\text{MEAS:V12OCT:RESO?} \\
\Rightarrow 1/3
\]
INPUt Subsystem

INPUt:SELEct

Shortcut Configures which input connector is selected.

Availability always

Parameter [XLR|RCA] \(\text{string} \)

Example

\[\rightarrow \text{INPU:SELE SELECT XLR}\]

INPUt:SELEct?

Shortcut Queries the input range setting.

Availability always

Answer [XLR|RCA] \(\text{string} \)

Example

\[\rightarrow \text{INPU:SELE?} \]
\[\rightarrow \text{XLR}\]

INPUt:RANGe

Shortcut Configures the input range setting for the SLMeter, Zoom FFT and 1/12 Octave analyzer

Availability SLMeter when stopped, FFT, 1/12 Oct

Parameter [LOW|MID|HIGH] \(\text{string} \)

Example

\[\rightarrow \text{INPU:RANGE MID}\]

INPUt:RANGe?

Shortcut Queries the input range setting for the SLMeter, Zoom FFT and 1/12 Octave analyzer

Availability always

Answer [LOW|MID|HIGH] \(\text{string} \)

Example

\[\rightarrow \text{INPU:RANGE?} \]
\[\rightarrow \text{MID}\]
INPUt: PHANtom

Shortcut
Configures the input range setting.

Availability
always

Answer
[ON|OFF]
`string`

Example
```bash  
→ INPUT:PHAN ON  
```

Details
This command is **not** accepted when an ASD sensor is connected.

INPUt: PHANtom?

Shortcut
Queries the phantom power setting.

Availability
always

Answer
[ON|OFF|ASD]
`string`

Example
```bash  
→ INPUT:PHAN?  
→ ON
```
CALIBrate Subsystem

CALIBrate:MIC:TYPE?

Shortcut
Queries the microphone type recognized by the ASD (Automatic Sensor Detection) system.

Availability
Always

Answer
[M2210|M4260|noASD] String

Example
→ CALIB:MIC:TYPE?
→ M4260

Details
If no ASD microphone is currently connected, the command always returns noASD. In contrast, the command CALIB:MIC:SENS:SOURce returns the ASD microphone that was last connected, as long as the microphone sensitivity has not been changed manually or by remote command.

CALIBrate:MIC:SENS:SOURce?

Shortcut
Queries the source of the sensitivity value.

Availability
always

Answer
[PLEASE CALIBRATE|USER CALIBRATED|MANUALLY] string
M2210 USER|M2210 FACTORY|M2210 CAL.CENTER
M4260 USER|M4260 FACTORY|M4260 CAL.CENTER

Example
→ CALIB:MIC:SENS:SOURce?
→ M4260 FACTORY

Details
Returns the ASD microphone that was last connected as long as the microphone sensitivity has not been changed manually or by remote command. PLEASE CALIBRATE is returned when the sensitivity has never been set since the last factory default setup.
CALIBrate:MIC:SENS:VALUE

Shortcut
Defines the microphone sensitivity in V/Pa.

Availability
always

Parameter
<sens> float 100e-6 to 9.99 V/Pa

Example

```
→ CALIB:MIC:SENS:VALU 0.02
    CALIB:MIC:SENS:VALU 20e-3
```

Details
Command is not accepted when an ASD microphone is connected.

CALIBrate:MIC:SENS:VALUE?

Shortcut
Queries the microphone sensitivity in V/Pa.

Availability
always

Answer
<sens> V,OK float 100e-6 to 9.99 V/Pa

Example

```
→ CALIB:MIC:SENS:VALU?
→ 21.54e-3 V,OK
```
SYSTem Subsystem

SYSTem:ERROR?

<table>
<thead>
<tr>
<th>Shortcut</th>
<th>Queries the error queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>always</td>
</tr>
<tr>
<td>Answer</td>
<td>{errno_n,} integer n ≤ 10</td>
</tr>
</tbody>
</table>

SCPI System errors
-350 Error queue full - at least 2 errors lost
-115 Too many parameters in command
-113 Invalid command
-112 Too many characters in one of the command parts
-109 Missing command or parameter
-108 Invalid parameter

XL2 errors
0 no error (queue is empty)
1 Command too long; too many characters without new line
2 UNEXPECTED_PID
3 DSP_TIMEOUT
4 Changing microphone sensitivity or switching off Phantom Power is not possible when an ASD microphone is connected to the XL2
5 Parameter not available, license not installed
6 dt value does not exist for this parameter
7 Parameter is not available in the current measurement function
8 Unspecified DSP error
9 Not valid, measurement is running

Example

```
→ SYSTem:ERROR?
→ -113, -113, -113, -109, -109
→ SYSTem:ERROR?
→ 0
```

Details

There are different classes of errors. Some errors refer to the command syntax, others to internal states of the XL2. Every error is pushed into the error queue that must be queried to get information about any error.
SYSTem:KEY

Shortcut
Simulates a key stroke on the XL2.

Availability
always

Parameter
```
[ESC|NEXT|FNEXT|
PREV|FPREV|
ENTER|PAGE|
START|LSTART|PAUSE|
SPEAKER|LIMIT|LIGHT]
```

Example
```
 → SYST:KEY PAGE
→ OK
 → SYST:KEY ESC ENTER PREV PREV
→ OK
```

Details
The command returns OK after all keystrokes have been executed by the XL2. Execution of the keys can take a moment, especially if measurement functions are changed using this command. FNEXT and FPREV are "fast" wheel turn simulations that are necessary to manipulate numbers using key commands. LSTART (long start) is used to enter/exit the locked run mode and to exit the XL2 scheduler.

SYSTem:KLOCk

Shortcut
Locks the keyboard of the XL2 or only Start, Pause, Page keys

Availability
always

Parameter
```
[ON {key,}|OFF] string
```

Example
```
 → SYST:KLOCK ON
 → SYST:KLOCK ON START
 → SYST:KLOCK ON START Page
```

Details
If the USB cable is disconnected, KLOCK is automatically set to OFF.

SYSTem:KLOCk?

Shortcut
Queries the key lock status

Availability
always

Answer
```
[ON|OFF] string
```

Example
```
 → SYST:KLOCK?
→ ON
```
SYSTem:SPEAker:ONOff

Shortcut: Switching speaker on and off
Availability: always
Parameter: [ON|OFF] string
Example: `→ SYST:Speaker:OnOff On`

SYSTem:SPEAker:LEVEL

Shortcut: Set the Speaker Level
Availability: always
Parameter: <level> integer -80 to 80
Example: `→ SYST:Speaker:Level 10`

SYSTem:LIMItled?

Shortcut: Queries the limit LED status
Availability: always
Answer: [OFF|GREEN|ORANGE|RED] string
Example: `→ SYST:LIMI?` → `GREEN`

SYSTem:OPTIons?

Shortcut: Queries the installed options
Availability: always
Answer: <EAP,> <STIPA,> <REMOTE,> <SLI,> <CA,> <TA,> <DX,> <SI,> <LW>
Example: `→ SYST:OPTI?` → `EAP,REMOTE`

Details: These are the used abbreviations for the available Options: Extended Acoustic Pack (EAP), Spectral Limits Option (SLI), Cinema Assistant (CA), Type Approved (TA), Data Explorer (DX), Data Explorer (DX), Sound Insulation (SI), Sound Power (LW)
SYSTem:MSD

Shortcut
Switches the XL2 to the USB mass storage mode

Availability
always

Answer
No answer

Example

```
→ SYST:MSD
```

Details
After sending this command, the XL2 drops the COM connection (no more remote commands are possible) and switches to mass storage mode. The host then has full access to the data stored on the SD card of the XL2.

To return to COM mode eject the XL2 drive from the host computer.

If "safely remove" was chosen by the host, the XL2 returns to the COM mode after a timeout of 2 minutes.

SYSTem:MSDMAC

Shortcut
Switches the XL2 to the USB mass storage mode for Mac and Linux.

Availability
always

Answer
No answer

Example

```
→ SYST:MSDMAC
```

Details
Use this Command on Mac and Linux instead of „SYSTem:MSD”, otherwise MSD will timeout after 2 minutes and the XL2 returns to COM mode.

After sending this command, the XL2 drops the COM connection (no more remote commands are possible) and switches to mass storage mode. The host then has full access to the data stored on the SD card of the XL2.

To return to COM mode eject the XL2 drive from the host computer.

Attention: If you unmount the XL2 drive by the host, the XL2 will not return to COM mode.
Supplements

Automatic COM Port Detection

The following procedure automatically detects the COM port assigned for communication to your XL2. Thus, it is not necessary for you to manually set the COM port. The procedure is also used in the XL2 Projector PRO and the Microsoft Excel and LabVIEW XL2 remote demonstration projects.

The XL2 Projector PRO uses the Windows built-in driver „usbser.sys“ to communicate with your XL2. This driver provides a virtual COM port over USB. If the XL2 Projector PRO is installed, the usbser.sys driver is available. In order to find the COM port assigned to your XL2, kindly follow these steps in the MS Windows registry:

1. Execute the command „regedit“ to open the registry editor.

2. Open the key „HKEY_LOCAL_MACHINE\system\CurrentControlSet\Services\usbser“, which is available if the driver is installed.

3. Open the „Enum“ subkey that is created as soon as an usbser device is connected to your PC for the first time.

4. Note the hexadecimal value behind the „Count“ entry in the Enum subdirectory; it indicates the number of devices that are currently using the usbser driver.

 Example: Count → 0x00000010 (10) means that ten devices are using the usbser driver.

5. Note the strings behind the variables „0“ „1“ … to the aforementioned number of devices that are using the usbser driver. If the string contains the substring „VID_1A2B&PID_0004“, the connected device is an XL2 from NTi Audio.

 Example: the string „USB\VID_1A2B&PID_0004\5&640e942&0&1“ indicates that the connected device is an XL2.

6. Open the subkey „HKEY_LOCAL_MACHINE\system\CurrentControlSet\Enum\<xxx>\Device Parameters“ under „Computer“;, whereby <xxx> stands for the result string obtained in step 5.

7. Read the variable „PortName“ from the key; it contains the name of the virtual COM port to which your XL2 is connected (e.g. „COM10“).

8. Open the given COM port to check if it is already used by another program.

NTi Audio offers an implementation of this algorithm in C++, VBA and LabVIEW upon request.
Accessing an XL2 over the Internet

The NetBox adds internet access to the XL2 and allows SFTP (Secure File Transfer Protocol) and remote COM port access to the device. Mobile communication, LAN of Wi-Fi can be used to connect the NetBox to the internet.

For an easy connection setup NTi Audio provides a gateway server on the internet\(^1\). From your PC, you can login to the server via SFTP to access the XL2 files. Also, the server provides access to the XL2 COM port from your software using a socket.

NETBOX GATEWAY MODE

A NetBox can either be used

- to connect the XL2 to the NoiseScout System www.noisescout.com, for fully-managed noise monitoring (for this the NetBox is set to **NoiseScout** mode) or
- to grant SFTP and COM port access (for this the NetBox is set to **Gateway** mode)

SWITCHING BETWEEN NOISESCOUT AND GATEWAY MODE

To activate the Gateway Mode for your NetBox you need to contact NTi Audio via email at info@nti-audio.com. Once activated, you can switch between NoiseScout and Gateway Mode on www.noisescout.com.

![Picture 1: List of Noise Monitors\(^2\) on the Dashboard in www.noisescout.com](image)

In the image above, NetBox AAAAA-AAAAA is assigned to a Job and a Location. It is not available for switching into Gateway Mode. NetBox BBBBBB-BBBBB is not assigned and can thus be switched to Gateway Mode:

![Picture 2: Switching between NoiseScout and Gateway Mode](image)

After switching the Mode, the NetBox will reboot. A NetBox in Gateway Mode is still connected to the NoiseScout server, but is not available anymore for assignment to a Location.

\(^1\) This overcomes the limitations of local area networks and avoids the challenging router setup required for a direct connection from the NetBox to your PC.

\(^2\) A Noise Monitor consists of a NetBox plus an XL2.
SFTP ACCESS

For details about the SFTP access please refer to the appropriate manual.

The connection details in brief:
- Server: xl2gateway.nti-audio.com
- Username: <xxxxx-xxxxx> (NetBox serial number)
- Password: <Your Password at my.nti-audio.com>
- Port: 22

COM PORT ACCESS

The gateway server xl2gateway.nti-audio.com listens on port 8432 for incoming, encrypted TLS connections. Once connected, the server expects a NetBox serial number and a password separated by a comma and terminated by a new line or by a carriage return and a new line:

If your login is correct, the NetBox is online and the XL2 is connected to the NetBox, the server responds with the following answer:

‘Login OK, NetBox OK, XL2 OK<CR><LF>’.

Hint: In case of any error the server returns an error message and terminates the connection. The following errors are possible:

<table>
<thead>
<tr>
<th>Error</th>
<th>Message sent by server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial number or password is incorrect</td>
<td>Login incorrect<CR><LF></td>
</tr>
<tr>
<td>NetBox is offline</td>
<td>Login OK, NetBox offline<CR><LF></td>
</tr>
<tr>
<td>NetBox is already in use by another remote connection</td>
<td>Login OK, NetBox already in use<CR><LF></td>
</tr>
<tr>
<td>XL2 is not connected to the NetBox</td>
<td>Login OK, NetBox OK, XL2 not connected<CR><LF></td>
</tr>
</tbody>
</table>

After a successful login, the server switches the connection to the related Noise Monitor and you can send any remote command to the XL2 in the same way you do with a local USB connection. Only one connection per NetBox is possible at the time.
COM PORT ACCESS SAMPLE CODE

Python 2.7, usage: python TestXL2Gateway.py

```python
import socket
import select
import ssl

Response = str()

def readline(Conn):
    global Response
    Line = ''
    while True:
        rd, wr, er = select.select([Conn], [], [], 0.5)
        if rd:
            Packet = Conn.recv(200)
            if not Packet:
                Conn.close()
            break
        Response += Packet
        if '\n' in Response:
            Lines = Response.split('\n',1)
            Line = Lines[0]
            Response = Lines[1]
            break
    return Line.strip('\r')

Serial = 'XXXXX-XXXXX'
Passwd = 'MyPassWord'
Login = ',' .join([Serial, Passwd]) + '\r\n'
_s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
Conn = ssl.wrap_socket(_s, ssl_version=ssl.PROTOCOL_TLSv1)
Conn.connect(('xl2gateway.nti-audio.com', 8432))

Conn.send(Login)
LoginResult = readline(Conn)
print LoginResult

if LoginResult == 'Login OK, NetBox OK, XL2 OK':
    Conn.send('*idn?\r\n')
    IdnResult = readline(Conn)
    print IdnResult
    raw_input('press <ENTER> to exit')

Conn.close()
```